
Journal of Sound and Vibration (1998) 216(2), 321–327
Article No. sv981652

RECURRENCE SCHEME FOR THE GENERATION OF
TWO-DIMENSIONAL BOUNDARY CHARACTERISTIC

ORTHOGONAL POLYNOMIALS TO STUDY
VIBRATION OF PLATES

R. B. B, S. C*  I. S

Department of Mechanical Engineering, Concordia University,
1455 De Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada

(Received 23 March 1998)

1. 

The Rayleigh–Ritz method is a very powerful technique that can be used to predict the
natural frequencies and mode shapes of vibrating structures. The method requires
assumption of deflection shapes that satisfy at least the geometrical boundary conditions
of the vibrating structure in order to evaluate its maximum kinetic and potential
energies. Vibration of one-dimensional structures or structures whose deflection can be
assumed in the form of product of one-dimensional functions, such as rectangular plates,
were studied using one-dimensional boundary characteristic orthogonal polynomials
proposed by Bhat [1]. The method has been successfully used to study plate vibration
with complicating effects by Dickinson and Di Blasio [2], Kim and Dickinson [3],
Liew et al. [4, 5], etc. Many studies on the vibration of non-rectangular plates assuming
various deflection shapes in the Rayleigh–Ritz method are reported by Leissa [6].
Bhat [7] proposed two-dimensional boundary characteristic orthogonal polynomials
to study non-rectangular plates in the Rayleigh–Ritz method. Singh and Chakraverty
[8–10] generated the two-dimensional boundary characteristic orthogonal polynomials in
a systematic fashion to study the vibration of elliptic plates with clamped,
simply-supported and free boundaries. They also generated the two-dimensional boundary
characteristic orthogonal polynomials over other domains in order to study plates of
various geometries [11].

In constructing one-dimensional boundary characteristic orthogonal polynomials one
can use the well-known three-term recurrence relation, as given in Chihara [12]. However,
no such recurrence relation was employed in constructing the two-dimensional boundary
characteristic orthogonal polynomials. They were generated by orthogonalizing with all
the previously generated orthogonal polynomials.

The present paper provides an efficient numerical scheme for generating the
two-dimensional boundary characteristic orthogonal polynomials using recurrence
relations suggested in references [13–15] for the study of vibration of plates of various
geometries. The three-term recurrence relation to generate multi-dimensional orthogonal
polynomials, presented by Kowlaski [13, 14], did not consider these polynomials to satisfy
any conditions at the boundary of the domain. In the present study, however,
two-dimensional orthogonal polynomials are constructed so as to satisfy the essential
boundary conditions of the vibrating structure. Such two-dimensional orthogonal
polynomials constructed using the recurrence relations are compared with those
constructed by orthogonalizing with all the previous polynomials, in order to verify the
validity of the recurrence relations.
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2.    -  

For one-dimensional orthogonal polynomials {fk (x)}, we have the three-term
recurrence relation as

fk+1(x)= (dkx+ ek )fk (x)+ pkfk−1(x), k=0, 1, 2, . . . , (1)

where the coefficients dk , ek , pk , k=0, 1, 2, . . . , can be found using the orthogonality
property.

A similar three-term recurrence relation among orthogonal polynomials in n-variables
was reported by Kowalski [13, 14]. In order to develop such a recurrence scheme that can
be numerically implemented for two variables, some preliminaries are discussed as follows.

Let

ta
n

be a vector space of all polynomials with real coefficients in n variables and let

tk
n

be its subspace of polynomials whose total degree in n variables is not larger than k, then

dim t
k

n

= s
k

i=0

ri
n =0n+ k

k 1,
where

rk
n =0n+ k−1

k 1
is the number of monomials in the basis whose degree is equal to k.

If a basis in

ta
n

be denoted by {fk
i }a,rkn

k=0,i=1, and each polynomial is of the degree indicated by its superscript,
then we define

fk (x)= [fk
1(x), fk

2(x), . . . , fk
rk
n
(x)]T, (2)

and

xfk (x)= [x1fk (x)T=x2fk (x)T= · · · =xnfk (x)T]T, (3)

where x=(x1, x2, . . . , xn )$Rn, k=0, 1, . . . .
A recurrence formula relating fk−1, fk and fk+1 can be written as

xfk =Akfk+1 +Bkfk +Ckfk−1,

fk+1 =Dkxfk +Ekfk +Gkfk−1, k=0, 1, . . . ,
(4)
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where Ak , Bk , Ck , Dk , Ek and Gk are matrices with

Ak : nrk
n × rk+1

n , Bk : nrk
n × rk

n , Ck : nrk
n × rk−1

n ,

Dk : rk+1
n × nrk

n , Ek : rk+1
n × rk

n , Gk : rk+1
n × rk−1

n ,

and f−1 =0, C0 =G0 =0.
Further, if relations (4) hold then

DkAk = I,

Ek =−DkBk , . (5)h
G

G

J

jGk =−DkCk ,

3.        

 -  

For the numerical implementation of the procedure, the first polynomial is defined as

f(1)
1 = g(X, Y), (6)

where g(X, Y) satisfies the essential boundary conditions. As an example the function
g(X, Y) is defined for an elliptical boundary as

g(X, Y)=01−
X2

a2 −
Y2

b21
s

,

where a and b are the semi major and minor axes of the ellipse, respectively, and s takes
the value of 0, 1 or 2 in order to define free, simply-supported or clamped conditions,
respectively, at the boundary.

In order to incorporate the recurrence scheme of Kowalski [13, 14], the polynomials are
organised in to the following classes forming a pyramid given by

where the superscript in f(j)
i denotes the class number j to which it belongs.

The inner product of two functions f(j)
i (X, Y) and f(r)

k (X, Y) is defined as

�f(j)
i , f(r)

k �=gg
R

f(j)
i (X, Y) f(r)

k (X, Y) dx dy. (7)

The norm of f(j)
i is therefore given by

>f(j)
i >= �f(j)

i , f(j)
i �1/2. (8)

f(1)
1

f(2)
2 f(2)

3

f(3)
4 f(3)

5 f(3)
6

f(4)
7 f(4)

8 f(4)
9 f(4)

10

– – – – –

– – – – – –

f(n)
{n(n+1)/2)(− (n−1)} f(n)

{(n(n+1)/2)− (n−2)} – · · – f(n)
{(n(n+1)/2)−1} f(n)

{n(n+1)/2}
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It is interesting to note here that in each class of polynomials, the number of orthogonal
polynomials is equal to the class number. For example, class number 2 contains 2
orthogonal polynomials and those can be obtained as

f(2)
2 =F2 =Xf(1)

1 − a21f
(1)
1 , (9)

and

f(2)
3 =F3 =Yf(1)

1 − a31f
(1)
1 − a32f

(2)
2 , (10)

where

a21 =
�Xf(1)

1 , f(1)
1 �

�f(1)
1 , f(1)

1 � , a31 =
�Yf(1)

1 , f(1)
1 �

�f(1)
1 , f(1)

1 � , a32 =
�Yf(1)

1 , f(2)
2 �

�f(2)
2 , f(2)

2 � ,

and so on. It is to be noted here that the above relations (9) and (10) are the same as
Kowalski’s relations given in equation (4), where

Ak =$ 1
a32

0
1%, Bk =$a21

a31%, Dk =$ 1
−a32

0
1%, Ek =$ −a21

−a31 + a32a21%,
and Ck =Gk =0.

Moreover, the above matrices also satisfy equations (5). Now, in general, class j will have
j orthogonal polynomials, and those can be generated by the recurrence scheme.

f(j)
i =Xf(j−1)

{i−(j−1)} − s
i−1

k= l

aikf
(j)
k − s

l−1

k=m

aikf
(j−1)
k − s

m−1

k= p

aikf
(j−2)
k ; i= {L−(j−1)}, . . . , {L−1},

Yf(j−1)
(i− j) − s

i−1

k= l

aikf
(j)
k − s

l−1

k=m

aikf
(j−1)
k − s

m−1

k= p

aikf
(j−2)
k ; i=L, j=2, 3, . . . , N, (11)

where

l=6j(j+1)
2

− (j−1)7
describes the first orthogonal polynomial of the jth class,

L=
j(j+1)

2

describes the last orthogonal polynomial of the jth class,

m=6(j−1)j
2

− (j−2)7
describes the first orthogonal polynomial of the (j−1)th class, and

p=6(j−2)(j−1)
2

− (j−3)7e 0
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describes the first orthogonal polynomial of the (j−2)th class. Also,

aik =g
G

G

F

f

�Xf(j−1)
{i−(j−1)}, f(r)

k �
�f(r)

k , f(r)
k � , i= {L−(j−1)}, . . . , {L−1},

�Yf(j−1)
(i− j) , f(r)

k �
�f(r)

k , f(r)
k � , i=L,

, (12)

where r= j, (j−1) and (j−2), respectively, corresponding to aik appearing in the first,
second and third summation terms in equation (11). These three summation terms in
equation (11) clearly demonstrate that all the orthogonal polynomials in the jth class can
be constructed using only those previously generated in the jth class so far, and those of
the previous two classes i.e., (j−1)th and (j−2)th.

The orthogonal polynomials are then normalized by the condition

f
 (j)
i =

f(j)
i

>f(j)
i >.

When the structure is undergoing simple harmonic motion, equating the maximum
strain energy, Vmax , and the maximum kinetic energy, Tmax , of the deformed plate, the
Rayleigh quotient is obtained as

v2 =
D ffR [W2

xx +2nWxxWyy +W2
yy +2(1− n)W2

xy] dy dx
7h ffR W2 dy dx

, (13)

where W(x, y) is the deflection of the plate, subscripts on W denote differentiation with
respect to the subscripted variable, D=Eh3/(12(1− n2)) is the flexural rigidity, E is
Young’s modulus, n is the Poisson ratio, h is the uniform plate thickness, 7 is the density
of the plate material and v is the radian frequency of vibration.

The plate deflection is assumed in the form

W(x, y)= s
N

i=1

cifi (x, y), (14)

where the superscript describing the class of the orthogonal polynomial is dropped since
it is no longer needed.

Applying the condition for stationarity of v2 with respect to the coefficients cj , in the
form 1v2/1cj =0, results in the eigenvalue problem

s
N

i=1

(aji − l2bji )ci =0, j=1, 2, . . . , N, (15)

where

aji =gg
R

{(fi )XX (fj )XX +(fi )YY (fj )YY + n[(fi )XX (fj )YY +(fi )YY (fj )XX ]

+2(1− n)(fi )XY (fj )XY} dY dX, (16)

bji =gg
R

fifj dY dX= dji , l2 =
a47hv2

D
, (17, 18)

and X= x/a, Y= y/a.
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It may be noted that (fi )XX , (fi )YY , etc. are second derivatives of fi with respect to X
and Y, and dji is given by dji =0, if j$ i; dji =1, if j= i.

4.    

The recurrence scheme presented above is quite convenient for computer
implementation. Two-dimensional boundary characteristic orthogonal polynomials have
been generated using the present scheme for a variety of geometries. The orthonormality
of the generated polynomials have also been verified. As already discussed, generation of
any class of orthogonal polynomials requires only the orthogonal polynomials of the
previous two classes and the orthogonal polynomials of the current class that have been
already generated so far. Hence, the undue labour of orthogonalization with all the
previous orthogonal polynomials is saved. Although the orthogonal polynomials
generated by the present method are identical to those obtained in references [8–11], the
present algorithm makes the generation quite efficient and straight forward in comparison
to the previous method and the execution time is also greatly reduced.

The present scheme can be applied to vibration analysis of plates with various geometries
and complicating effects. It is important to mention here that this scheme can easily be
extended to study problems in three (or more) dimensions in vibration, fluid mechanics,
diffusion etc.
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